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ANALYTICALDETERMINATION OF COUPLED BENDING-TORSION VIBRATIONS
OF CANTILEVER BEAMS BY MEANS OF STATION FUNCTIONS ‘

By ALEXArinEEMm%mEEmIiand SEL- GEAZILEB

SUMMARY

.4 method based on the concept of Stution Function-sis pre-
wu%d for calculating th8 mode8 and the frequ6neie8 of rwn-
uniform cantilever beams vibrating in torsion, bendiq, and
coupled bendin@rsion motion. Tb metlwd combina some
of the advantagesof the Rayki@-Ritz and Stodob methods, in
that a continuous loadingfunction for the beam h ~ed, with
#he admntages of the in.uence-ooqfcimt method, in thut the
continuous loading function is obtuined & ternM of the d&-
placements at ajinite number of datiow along the beam.

The Station Functions were deriredfor a number of station9
rang7it~jrom one to sight. Tiie de$eetiom were obtained in
tmn.s of the physical properh”esof the beam and Station Num-
bers, which are general in nuture and which hare been tabulatid

for eusy reference. Elcampleswere worked out in detail; com-
pariwns were made with exu.cttheoreticalreed%. For a uni-
form cantiltwer beam with n stutim.s, & j%t n mo&s and
frequ+mcieswere in good agreementuM the theoretically exact
dues. The e$ect of coupli~ between bendirq and torsion
was shown to reduce tb jirst naturalj+eyuency to a rake below
z%utwhich it would hare # there were m coupling.

INTRODUCTION

The faihwe of turbine and compressor blades due to vibra-
tions has Ied to an increased interest in the study of the
vibrations of these bIades and in the determination of the
natural modes and frequencies. In such theoretical studies,
it is usually assumed that the compressor or turbine bkde
acts as a cantdever beam. The calculation of the uncoupled
modes of arbitrarily shaped cantdever beams has been ex-
tensively instigated (references 1 to 4), but. little work has
as yet been done on cahmlating the coupled modes of such
beams. If the geometry of the beam is such that coupling
exists! the coupled modes are the actual vibrational modes
that must be calculated.

Four generaI methods are currently in use for calculating
uncoupled modes and frequencies of nonuniform beam.
These methods are the Rayleigh-Ritz or energy method
(reference I), the Stodola method (references 5 and 6), the
influence-coefficient method (references 4 and 7}, and the
integral-equation method (references 8 and 9). For each of
these methods, computational work can usually be carried out
in se~erfd ways. For example, by the use of iu.iluence co-
efficients the modes and frequencies can be determined by

Mykelst.ad’s iteration procedure (rekence 7) or by matrix
methods (reference 4).

Any one of these methods can be extended to the calcula-
tion of coupled bending-torsion modes. The Rayleigh-Ritz
method usually requires that the uncoupled modes be deter-
mined before the coupled modes can be computed. In apply-
ing either the RayIeigh-Ritz or the Stodola method, great
di%icuhy is encountered inaccurately determinhg the higher
modes, because the lower modes must fit be “swept out”
by the use of exact orthogonality conditions (reference 10];
the process WN otherwise always converge back to the
lowest mode. The same difikulties are encountered in the
integral-equation method.

The influence-ooeflicient method reduces the problem to
one having a finite number of degrees of freedom. The beam
is divided into n intervals and a concentrated loading is as-
sumed at the center of gravity of each inter-d. The solution
of the redtant determinanta.1 equation gives the fit n
modes. The accuracy of the higher modes is, however, very
poor; only the tit third of the modes and the tirst half of the
fiequeneies are obtained within the USUEJenginewing acou-
racy. Carrying along so many useless modes greatly in-
creases the labor irrrohwd.

A straightforward accurate method for determining g the
caupled bending-torsion modes and the freqtiencies of non-
uniform cantilever beams, together with applications of this
method, was developed at the NTACA Lewis laborato~ dur-
ing 1949 and is presented herein. This method is based on
the use of Station Functions as first discussed in refer-
ence 11. korporated in the method are the advantages of
the cuntiwous-function deflections of the Rayleigh-Ritz
and Stodola methods together with the admntages of the
finite number of degrees of freedom of the infhence-coefficient _
method. When the method is applied to a uniform beam,
the first n roots of the resultant determinant tal equation are
amply acourate for engineering purposes.

The flmd. determinant tal equation is solved herein by
matrix-it eration methods (reference 4). Any other con-
venient. method may, however, be used and no knowledge
of matrix algebra is needed to carry out the calculations by
the matrix method. The work can be done by an inexperi-
enced computer, as the only operations necessary for determ-

~ each mode me cum~ati~e m~tip~cation ~d di~sion.
In addition, for the case in which the coupling coefficient
remains constant along the beam, a simple quadratic

-.
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forrmda and a series of curves are presented for determining
the first coupled mode in terms of the uncoupled modes.
Exampka are developed in detail and comparisons with
exact theoretical results are included.

THEORY

In the usual influence-coefilcient methods for solving
dynamicaI problemq a continuous body having an infinite
number of degrees of freedom is replaced by a body having a
finite number of degrees of freedom. Two principal awmrnp-
tions are then made that introduce inaccuracies into the
solutions, particularly in the higher modes: (1) The resultant
of the inertia loads of all the infinitesimal maesea in a finite
interval passes through the center of gravity of that interval;
and (2) a concentrated load that is the resultant of a dis-
tributed load produces the samo deflection as the distributed
load. An attempt haa been made tQ reduce the error due to
the second of these assumptions by the use of weighting
matrices (reference 12). Although the accuracy is thereby
increased, the ei?ect of the first assumption is still great
enough to introduce serious errors (reference 11).

In order to eliminate these assumptions, Rauscher (ref-
erence 11) introduced the concept of Station Functions.
Instead of assuming the inertia loads to be concentrated at
the centers of gravity of the intervals, the inertia loads
and, consequently, the deflections are assumed to be con-
tinuous functions along the beam. The valuea of these
continuous deflection functions at the reference stations must
equal the deflections of the reference stations. The loading
on the beam is therefore a continuous function of the de-
flections of the reference stations. Inasmuch as the deflec-
tions of the reference stations can be computed from the
loading on the beam, which in turn is available from the
deflections, the deflections are therefore obtained as functions
of themselves. This procedure givee n homogeneous equa-
tions in the n deflections of the reference stations. The
resultant determimmtal equation hae n roots for the fre-
quency; it will be shown that for a uniform beam all these
roots are sufficiently accurate for engineering purposes if
the deflection functions are properly chosen. (For coupled
bending-torsion vibrations, 2n homogeneous equations and
2n roots are obtained for n stations.)

The deflection functions used must satisfy the boundary
conditions of the problem and ako the condition that, at
any reference station, the value of the function must equal
the deflection of the reference station. Although it is always
possible to find directly a single function that will satisfy
these conditions, it is more convenient to obtain different
component functions at each station and to add alI these
component functions together ta give the complete defect-
ion function. Rauscher (reference 11) calls these compon-
ent deflection functions Station Functions. For example,
the complete torsional deflection function for the beam wiLl
have the following form:

8(2)=3 j,(z)e,

where
2 dimensionless distance along beam
e(2) tomiomd deflection at distance z from root

e, torsional deflection at j* stut,ion
j,(z) Station Function in torsion associated with jti sttition
(All symbols are defined in appendix A.)

Each Station Function must satisfy the boundary condi-
tions of the problem and the following additional conditions:
(1) At the reference station with which it is associated, the
Station Function equals the deflection of that refercncc sta-
tion; and (2) at d other reference stations, the Sttition
Function equals zero. The sum of all these Station Junct-
ions will then give the complete deflection function for the
beam. The Station Functions and corresponding loading
functions are derived in appendix B for torsional. vibrations,

,X*, -, +64 I
I 2 i-t i itl n

FIOrEE L-Cantllcwr km with n atakts.

bending vibrations, and coupled bending-toltion vibrations of
an arbitrary cantilever beam,

Torsional vibrations.-It is shown in appendix B that the
torsional deflections of the reference stations for a beam
divided into n intervals of length ~, as shown in figure I,
are given by the following system of equations:

(1)

where

iandj=l,2, . . . n

frequency of vibration
length of interval
mass moment of inertia per unit length about elastic

axis at root section
ratio of average mass moment of inertia per unit length

of kti interval to mass moment of inertia per unit length
at root section

torsional stiilness of root section
ratio of average torsional stiflnms of kti interval to tor-

sionaI stiilnea9 at root section
The Station Numbers i’Vikand M,k are functions only of the

integers k, j, and n and are defined as

iv,k=
J

~:lzjj (2) dz

s 1 (3)
Mj~= :’,W) dz

where ~~(z) represents the Station Functions derived in
appendix B and is given by

.f~(Z)=aUZ+aUZ2+. . . +atn+l)jz(”+’) (4)

The coefficients at, are determined in appendix B by
satisfying the conditions on the Station Functions. The
integrals in equations (3) are thus seen to be integraIs of
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simple polynomials and the limits of integration are integers.
The Station Numbers _Njk and .31fi me therefore rational
numbers, functions or& of the integers n, k, and j. These
numbers ha~e been evahmted and are Iisted in tabka I to
YIII.

If the physical properties of the beam under consideration
are known for each of the n intervals, Ok and ~k ~ be
known. The Station Numbers lVfi and Mf. can be obtained
from tables I to VIII. From equation (2), at, can then be
easily calculated.

Equation (1) actuaI1y represents n homo enecus equations
8

in the n unknown deflections f?t. With $ fi2=A, these equa-

tions mm be written as follows:
–“–

(a,,–x)e,+aMo,+ aI,oa+ . . . +%13,=0

cY2#l+(cY33-A)t92 +c2&+ . . . +L%e==o

ct’@l+a3*L92+(a33-A)t7~+ . . . +q.e==o

. . . . . . . . . . . . . . . . . . .

%J?I+CY,262+C41Z+ . . . +(a.=—k)d.=o

(5)

For a nontrivial solution, the determinant of the coefficients
must vanish and the characteristic equation becomes

all—h C212 ~l? . . . ~1~

a~l -—X% . ..a~

~aI au ~~—k . . . ~a= =0 (6)

. . . . . . . . . . . . . . . . . .

anI LYE~ a*a . . . a=n—x
or

(U-[CY,,]I=O (6a)

where I is the identity matrix, and [au] is the dynamicaI
matrix

Equation (6) can be died for the n values of k by any
method avaikble. The method used herein was to obtain
t-he values of A as the latent roots of the matrix [a,,], which
is actually the dynamical matrix for the problem. The mode
shapes are obtained at the same time.

Bending titrations. —The bend@ deflections for the beam
shown in figure 1 are given by the follow-ing system of equa-
tions (appendix B):

where

(7)

(8)

iandj=l,2, . . . n

mo mass per unit length of beam at root section
mk ratio of average mass per unit length of km intern-d to

mass per unit Iength at root section
B. bending stifbeas at root section
Bk ratio of avwmge bending stiffness of kti interval to bend-

ing stithesa at root section

The Station h’umbers M’fi, LV’j~,~’j~, and Q’j~ m’ f~c-
tions onIy of the integers k, j, and n and are defied by

(9)

The Station Functions q~z) are derived in appendLx B and
are given by

9M= 7%22+ tkz’a+ b4jz*+ . . . +6 (.+qjz (E+3 (lo)

The integrals in equations (9) are thus seen to be integrals
of simple polynomials. The Station Nnmbrm ill’j~, IWj,t,
P’fi, and Q’,k are rational numbers, functions only of the
integera j, k, and n. These numbers have been evaluated
and arc listed in tables I to VIH.

If the physical properties of the beam are known for each
of the n intervak, m.kand Bk will be known. The Station
Numbers 31’fi, lV’j,, P’m, and Q’j, are obtained from tables I
to VIII; f?~fcan then easfiy be calculated by equation (S).

The determinantal equation is:

or

where
~= Bo 1—.

mo# &

The dynamiccd matrix is ~J.

=0 (11}

(11a)

Coupled bending-torsion vibration.-The torsiomd and
bending deflections due to coupled bending-torsion vibra-
tions of a cantilever beam are given by (appendix B):

where

r. absolute magnitude of projection of distance from elastic
axis to center of gravity on perpendicular to bending
direction for root section

rm radius of gyration about elastic & at root section
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The quantities a,, and B,, are debed by equations (2)
and (8). The quantities yfj and &, are given by

J
where

k
Pjk=

H
$(k-l)z+~(k-l)’]jj( z)dz

k–1

H
~–: (k– 1)’z+; (k– 1)3 j,(z)dzQ~t= :_, ~ z 1

and & is the ratio of the average static mask unbalance of
the km interval to the static mass unbalance at the root
section.

The Station Numbers P,. and Qj, are listed in tables I to
VIII with the other Station Numbers. The determinantal
equation becomes

I. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .I

I. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
I

where [~J is the dynamical matrix and I is the identity
matrix.

The first n roots of equation (14) will give the fit n
coupled freqmmcies.

APPLICATIONS AND RESULTS

In applying the previously discussed method, it is necessmy
to determine for a given beam the elements aij, 19ij,~W and
&j of the dynamical matrices. These quantities wiJI depend
on the physical properties of the beam and on the number of
stations chosen. If the physicaI properties of the beam are
known, the quantities atj, I%,,7ij, and ti, can be directly cal-
culated from equations (2), (8), and (13). The numbem
ikfjk, N9k, Pjk, ~jk, M’jg, ~’jkt P’jfi, and Q’jt appearing in theso
equations depend on the number of stations n that are used
and can be read directly from tables I to VIII for any given
number of stations up to eight. Once thwe quantities have
been calculated, equations (6), (11), or (14) can be solved
for the frequencies by any method desired. The matrix-

iteration method used herein is simple and rapid and re-
quires no particular comput@ skill. As wiLI be indicated,
however, the accuracy of equations (6), (11), and (14) is
such that relatively few stations need bc used, in which
case it may be convenient to expand the determinants and
to solve the rcmdtant low-order aIgebraic equation.

In order to ilhstrate the accuracy, this method was applied
to torsional vibrations, bending vibrations, and coupled vi-
brations of a uniform cantilever beam. The exact theoretical
values for torsional vibrations and bending vibrations of
uniform cantilevers are well known. The exact thcoretiml
values for the coupled bending-torsion vibration of a uniform
beam were calculated (appenchx D). A comparison was
then made between the values obtained by the method
presented and the exact theoretical values. The number of
stationa used was 1, 2, and 3 (n=], n=2, and n=3). Tk
comparisons are summarized in table IX.

Torsional vibration.-For the case of rL uniform bmm,
C~=It= 1 and equation (2) becomes

%=$[Njk.-(k-l)~m+~ 34,,] (15)
-1 r-k 1

,

The values of N,. and M,k are given in tablm I to VIII.
The table to be used depends on the choice of the number
of stations.

Let n=l;
“ all=ivl]. .

From table I, N,,= 5/12,

;. ai1=5/12
and

or

The exact theoretical value for the first torsional frequency
is

G

co
‘=1”571 1,1’

The percentage error is – 1.4 when only one station is used.

The mode shape obtained by the method of Station Func-
tions agrees well with the theoretical mode shape, as is shown
in figure 2 (a).

Let n=2; then by equation (15) and table II,

31 239 13
am= N21+N22=—— +240 ~=~
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The determina ntal equation then becomes

which gives

X1=1.6214

A2=0.1953
Therefore

WI=l.571 r&

The exact theoretical values are

The precentage enors of the first two modes, for only two
stations, are found to be O and —4.

The mode shapes are shown in figures 2 (b) and 2 (c).
Agreement of the first mode with the exaot theoretical shape
is excellent; the second mode a=mees fairly weIL.
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Let n=3; then by equation (15) and t.able III, ,

ali=ATu+Mu+&wla= o.945833
au=Nzl+31=+~1~=0.95~33
au= N*l+Afa+Ma=0.520834
azl=iVu+-Nu+2M13= 1.033333
ff2=N21+Nn+2.Ma= 1.883333
an=hT~l+Na+2Ma=1 .011113
~a1=N11+Nn+N13= 1.012500

.-

au=N21+-Nn+-ATB= 2.025000
aas=A?sl+ATsz+ATas= 1.387501

The determina ntal equation is

0.945833 –k 0.958333 0.5~0834

1.033333 1.883333–A 1.011113 =0
1.012500 2.025000 1.387501–~ —

The solutions are
?tl=3.6474
&=o.4093
h=o.1599

Therefore

/
c

@l=l.571
IV

r
co

W=4.6891 ~

G
co

‘=7-502 Id’

.
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The exact theoretical values am

[
co.

W=.1.571 ~

dz
“2=4”712 g2

[

c,
‘=7”854 77

The percentage errors of the &st three mock, calculated
by use of three stations, are found to be O, –0.6, and –4.5,
respectively.

The mode shapes am shown in figures 2 (d) to 2 (f). The
first two modes agree very well with the theoretical shapes;
agreement of the third mode is fair.

This procedure can be carried out as shown for any number
of at~tiom dasired.

Bending vibrations,-l?or a uniform beam, Bk=mk= 1 and
equation (8) becomes

Btf=i={
-1 ip’jk—~j+ ,g&[(i-k+;)m+

(
~3–(~–1)3 (2ii-1) ~ ~,j,

3–2 ) 11
Let n= 1;

.../9.1=F’’,l-Q’H

(16)

and from table I

Therefore, from equation (7),

r
a=3.493 ~

Z@

—

The exact theoretical value is

u=3.516
r s

The precentage error for just one station is found to bo
–0.66.

The mode shape is shown in figure 3 (a) and is seen to
agree very well with the theoretically exact shape.

Let n=2; then by equation (16) and table II,

fill=P’11-Q’11+;N’12-; ~~’12=0.422745

b,2=p’,,–@21+;N’B–;M’%=O.295925

P*= 2P’21+2P’22– q21–Q’22+;N’22–: M’2,=o.905530



DETERMINATION OF COUPEED BENDING-TORSION VIBRATIONS OF CANTILEKES BEAMS ..B

The characteristic equation is

I 0.422745–k 0.295925 ~
= o

~1.145167 0.905530–A

The roots are
X,=1.2943

.“. w=3.516 r\$
w.=21.71 r\~

The exact theoretical dues are

rUI=3.516 —\ :;4

The percentage errors for two stations are therefore found
to be O for the first mode and —1.5 for the second mode.
The mode shapes are plotted in figures 3 (b) and 3 (c). The
first mode agrees exceIIently with the theoreticrilly exact
shape; the second mode agrees faidy well.

Let n=3; then by equation (16) and table III,

l%3=f’’3l– Q’31++.L%+;.W3-+ 31’34 LU’U=O.487441

&,=2p’H+ 2P’,,– w,,– a12+

;K’,,+2.V’,3–:J1’,,–; IW,3=0.648 170

~n=3P’,,+ 3P’u+3P’u– Q’,,– Q’,,-Q’+
.7~ .\-’z+ 4.A”B—; M’w-; M’B=5.822852

pu= 3P’3,+3P’3,+3P’a– V31– Q’32– Q’33+

:A’’3,+Lv’=–; 3f’u–~31’==3.204301

The characteristic equation is

0.270604–X 1.009943 0-487441

0.648170 3.266250–h 1.6 S9891
I
=0

0.985135 5.822852 3.204301–h

The roots are
A1=6.5521

X,= O.1667

&= O.0223 -—
Therefore

w=3.516 r+ .

The exact values are

U1=3.516 r1$
r ,

w=22.04 \~

r%=61.70 —\ :;4

The percentage errors for three stations are found to be O,
0, and —2.4, respectively. The modes are plotted in ilgures
3 (d) to 3 (f). The first two modes are seen to agree very
well with the theoretical mode shape; agreemmt of the ._.–
third mode is fair.

Coupled bending-torsion vibrations.-~ uniform beam
with the following constanta was chosen:

~=$=38.56

G=O.8

n’
r=—

193.2

n’
‘=241.5

The ~alues of a,, and I?tj are obtained as preciously and are “-
the same as gi~en before for n= 1, n= 2, and n=3. Also,
because S,=B~= G=m~=I~= 1, equations (13) become ‘-

,,,=-$[NH-uu+ A w,]
-1 r=k~l

&,=:l{iPm-Q1,+r=$+l [(WC+;)Njr+

( ) lj

jp_(~_l)3 2k–1 ~ M,, }
——

3 2
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Let n=l; then the determinant is

The roots are .
A,=0,0837

h*=o.0005

r
BO

U1=3.46 ——... .—
m#

r
~=44.7 A

mJ4

The procedure for crdculating the exact theoretical values is
derived in appendix D. The exact values are

r
B,

UI=3.49
o

<

B,
w=20.6 —

?n#

G
BO

U8=49.1
mJ4

The percentage error for the first mode, calculated by use of
one station, & –0.9.

Let n= 2; then the determinant is

=0

Substituting the known values and solving for x give for the
first two roots

X,=1.3197

h~=O.0412

and the frequmcies become

rBO
U1=3.48 —

m&4

The percentage errors for two stations are —0.3 for the first
mode and —4.4 for the second mode.

This procedure can be carried out for any number of sta-
tions desired. For threo stations, the frequerwics obtained
are

r
cq=3.48 ~

mJ4

rB,
w=20.6 —

m&4

r

BO
U3=48.2

a

The precentage errors are –0.3 for the iirst mode, O for the
second mode, and —1.8 for the third mode.

The results obtained by the method presented are seen
ta agree very well with the exact theoretical values,

These results are summarized in table IX, where a com-
parison is made with the results obtained for uncoupled
bending and torsional vibrations by use of influence coeffi-
cients with weighted matrices (referenco 12). The values
using weighted matrices were taken from table I of refer-
ence 12. It can be seen that for a given munber of stations,
the results obtained by the method presented herein arc con-
siderably better than those obtained by using influence co-

/.0

e

o-
“: .8 \
L

~

c
‘a
3 .6
8
k

i
o EYuct r%eorefico I

.4
0 .2 .4 .6 .8 Lo

—

Coupling coef f icienf, IE

PIor7EE4.–VarMfon of frwuencp ratio Q with wuplhg mefflelent 6 fmscweralVUIUCSof
uneaupledfrequcneyratb7.

ticients with weighted matrices. ln general, it is indicated
that for a uniform cantilever beam using n stations along
the beam, the first n— I frequencies and modes aro in ex-
cellent agreement with exact theoretical values and even
the nti mode is given within the accuracy with which tho
physical properties of the material are known, For a tapmed
beam, more stations may bo required, depending on tho
amount of taper. The number of stations required to give
satisfactory accuracy is listed in table X. A comparison is
made by using weighted influence coefficients; the values
are taken from table H of reference 12.

The first vibrational frequency is given approximatdy by
equation (C2) (appendix C) when coupling exists betwceu
bending and torsion; it is plotted in figure 4. In order to
check these curves, the exact SOIUtion was obtained (appm-
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ch D) for the ratio (~JaJ’ equal to 4 and was plotted on
the same figure. The dues given by equation (C%2)are
seen to be in excelIent agreement with the theoretically
exact values.

The effect of the coupling between bending and torsion
is to reduce the first natud frequency below that which
wouId esiat if there were no coupling. This effect is shown
in figure 4, wherein the value of fl is always less than 1.
This decrease in the first natural frequency due to coupling
is, however, relatively unimportant in the practical range of
(wJuJ’>4 and c<o.75.

SUMMARY OF RESUL!l% I
~ method based on the use of Station Functions is pre-

sented for czdculating uncoupkd and coupled bending-torsion
modes and frequencies of arbitrary continuous cantilever
beams. The rwdts of calculations made by this method

indicated that by the use of Station Functions derived herein,
n modes and frequencies can be obtained with sufficient. ac-
curacy by using just n stations aIong the beam if the beam is ..=
uniform. For a tapered beam, more stations may be re-
quired, depending on the amount of taper. The amount of
computational labor is markedy less than for other methods.
The use of Station Numbers tabuIated herein further re-
duces the amount of calculation necessmy. The effect of
coupling between bending and torsion is shown to reduce the
first natural frequency to a -ralue below that which it would .‘
have if there were no couphng.

LEWIS FLIGHT PEOP~SION LA.HORATORY,
—

NATIONALbTTSOEY Co ~EE FOE fiEROXATJTICS,

CLEVELAND, OHIO, Octobm18, 1949.



APPENDIX A

SYMBOLS

The fo~owing symbols are used in this report:

coefficient in equation for Station Function
in torsion

bending stiffness of beam, function of z
bending stiffness at root section of beam
ratio of average bending stiffness of kth

interwd to bending stiffness of root
section

coefficient in equation for Station Function
in bending

torsional stiffness of beam, function of z
torsional stiflness of root section of beam
ratio of average torsional stifhms of kth

intervfd to torsional stitlness at root
section

constants defined in appendix B
Station Function in torsion for jtb station

(defined in text)
Station Function in bending for j’h station

(defied in text)
mass moment of inertia per unit length of

beam about elastic axis, function of z,
except where otherwise defied

mass moment of inertia per unit length of
beam about elastic axis at root section

ratio of average mass moment of inertia
per unit length of kth interval to mass
moment of inertia per unit length at root
section

station indices
summation indices
length of beam

h4jk, ~jt, Pjk, Sta~ion Numbers (defined in ~t); function

(?jt,M’jt,~’jk, of indices j, k, and n
P’jk, Q’jk

m mass per unit length of beam, function of z
?nO mass per unit length of beam at root section
mt ratio of average mass per unit length of

lith interval to mass per unit length at
root section

n number of stations along beam
86

bending loading function on beam
torsional loading function on beam
absolute magnitude of projection of distance

from elastic axis to center of grtivity on
perpendicular to bending direction

radius of gyration about elastic sxis at
root section

absolute magmitudo of projection of distance
from elastic axis to center of gravity on
perpendicular to bending direction for
root section

static mass unbahmcc, function of z, n-w
static maw unbalance at root section, tnor~

ratio of average of static mass unbalance at
kth section to static muss unbalance
at root section

distance from root of beam, ~xcept whcro
otherwise defined

bending deflection, function of z
bending deflection at ‘W station
dimensionless distance along bctmn, x/6
elements of dynamical matrk defined in text.

I I. BO———
62Co m.
uncoupled frequency ratio, (wJuJz
length of interval along beam between

two stations
coupling coefficient, (rO/r@)*
torsional deflection, function of z
torsional deflection at ith station
root of frequency equation or characteristic

root of dynamical mat,rix
frequen~ ratio, (~/@#
frequency of vibration
frequency of uncoupled fundamental bend-

ing mode
frequency of uncoupled fundamental tor-

sional mode
second derivative of clcfl~ction with respect

to time



APPENDIX B

STATIOI’JFUNCTIONS AND DETEEMINANTAL EQUATIONS

TOSSIONAL VIBRATIONS

A schematic diagram of a cantilever beam divided into n
interwds of length 6 is show-n in figure 1. The Station
Functions for the torsional titrations of such a beam must
satisfy the fol.lowirg conditions:
At

2=0 j,(o)=o (331)
z=n j’,(n)=O @~)

Z=i ji(i)=l (B3)
z=j j@=O j#i w)

where.f’ (z) denotes the derivati~e with respect to z.
Equations (S1) and (B2) represent the boundary condi-

tions that must be satisfied by a cantdever beam vibrating
in torsion; equations (B3) and (W) represent the further
conditions imposed upon the Station Funotiona. These
conditions will be satisfwd by a function of the type

where the coe&iauta af~ must satisfy the following aimul-
tammus equations obtained from conditions (B2), (B3),
and (B4) :

0=aIi+2ncz2t+3n2aw+ . . . +(n+l)n%(.+u{ @2a)

1=&zlf+i*a2r+%3f+ . . . +i(’+~ a(.+l]i @3a)

The coefficients at, can be obtained by aoking equations
@Za) to (B~a) and the f~ct.io~ f,(z) determined for each

station. Equation (B5), however, can also be written in
the foIIowing form:

W)=’:! –?! ‘c’)ll(l-jit(z-cl)
- (B5a)

M

where & represents the product for aLl values of j except

j=i. The function in equation (B5a) obviously satisfiw

conditions (Bl), (B3), and @) because it has zeros at all
points specified by equation (B4), it equaIa 1 at the point
speciflsd by equation (B3), and it equala zero at the point
specified by equation @l). k order to satisfy condition
(Bz), the co~t~t. c1 is determined by substitution of equa-

tion (B5a) into equation (B2).

I cl=n for i#n

“=n(’+l+afor’=”

Equation (B5) can be obtained from equation @5a) by
carrying out the indicated multiplications. The complete
deflection function is then given by

e(z) =j,(z)ol+ja(z) 6*+ . . . +f=(z) 6.

=~fAz)fl, (B6)

The continuous Ioading function q~ (z) can now be titten
as

F
q,(z) =IW(Z)=IN :ljJz)ef (B7)

A continuous loading function, which is a function of the
deflections at the reference stations, has thus been obtained.

BENDING VIBRATIONS

The Station Functions for the bending vibrations of the
beam shown in figure 1 must satisfy the following conditions:
at

2=0 gi(o)=o @s)

Z=o g’,(o)=o @19)

z=n g“,(n)= o (B1O)

Z=n g“’,(n) = o (B1l)

Z=i g,(i)= 1 (B12)

z=j gtti] = o j#i @13)

where g’ (z), g“ (z.), and g’” (z) denote the first, second, and
third deri-rati~es, respectively, of g (z) tith respect to z.

Equations (S8) to (Bll) represent the boundary condi-
tions that must be satisfied by a cantilever beam vibrating
in bending and equat iona (B 12) and (B13) represent the
additional conditions imposed upon the Station Functions.

These conditions wilI be satisfied by functions of the type

9f(z)=fJ2@2+k$+ . . . +b (.+atz(’+a) (B14]

where the coefficients b~~must satisfy the following equa-
tions obtained from conditions @lO) ta @13):

0=2 bx+6nb8t+. . . +(n+3)(n+2)n(=~l) bb~a, (Won)

0=6 b3t+24nb,t+. . . +(n+3)(n+2)(?L+ l)nUb(S~a, (BIla)

1=i2bfi+Pb8~+ . . . +i@~a b~~at @l~a)

O=jib~+j%bat+. . . +j(’+~ b(fi~ai j#i (3313a)

The coefficients can therefore be obtained from equations
(BIOa) to (1313a) and the functions g, (z) determined for

87



88 REPORT 1005—NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

each station i, Equation (B14) can, however, be written
in the following form:

lT(2-jy(z~+c2z+cJ
(-B14a)g{(z)=~~ (~_-j)p(i~+c2{+@

j#i

where 11 represents the product for all values of j except
j#l

,j=i. The function in equation (B14a) obviously satifies
conditions (B8), (339), (B12), and (B13), because it has
zeros at all points specified by conditions (B8), (B9), and
(B13) and equala 1 at the point specified by equation (B12).
In order to satisfy conditions (B1O) and (B1 1), the constants
c1 and Caare determined by substitution of equation (B 14a)
into equations (B1O) and (Bl 1). The general forma for c1
and Caare, however, complicated and it is easier to obtain
the numerical values of these constants for each specific
case. Equation (B14) can then be obtained from equation
(B14a) by carrying out the indicated multiplications. The
complete deflection function is then given by

F
!@)= :19W

The continuous bending loading function g~(z)
written as

qb(z)=ma%(z)=mu~ ~9,(2)v,

(B I 5)

can now be

@16)

COUPLEDBENDING-TORSIONVIBRATIONS

The Station Functions for tho coupled bending-torsion
vibrations are the same as previously fiven for the bendhw.-
vibrations and the torsi~n vibrations. The
tions, however, arc given as follows (reference

q,(z) =I@2@)+su’ ?/(2)

= @ [Ijf(z)dt +s9@) Yd

and
gb(z)=sw’e(z)+mw’ v(z)

= U29 [Sjj(z) @j+ mgf(z) I/J

loading func~
7):

@17)

(J318)

DETEBMINANTAL EQUATIONSAND DYNAMICAL MATRICEi4

Once the Station Functions and the corresponding loading
functions havo been determined, the deflections at the
reference stations can be obtained in terms of the loading
function. A homogeneous equation in the reference-station
deflections for each station is thereby obtained. The
determinant of the coefEcients of the resultant set of homo-
geneous equations can be set equal to zero; the dcterminantal
frequency equation is thus derived. The deflections at the
reference stations are obtained by the well-knowm equations
for obtaining influence coficients.

Torsion.—The deflection at the station i due to the
continuous loading q~(z) on the beam is given by

If (? is assumed to have a constant value for each interval,
these integrals may be written as the sum of integrals over
each section, Equation (B 19) then becomes

(B20)

By substituting tho relation

gt(z)=dl ~jj (2)0,.

and by assuming a constant vahe for 1 for each interval and
changing the summation order,

~ I,J_;,(z) dz]]0,
r-k+l

Let
(B21)

Then

(B23)

where

cqf=
7[ 1
:1 -& LN~~-(k – 1) I~Mjl+,m$+l I,h4j, (Bq4)

If Og= 1,=1 (constsmt cross section), then

w=#[Nj,-(k-oM,.+$ M,,] (B25j
-1 r= +1

Let
co

h ‘W2

Then

Mi=&if8j (1323a)

and the characteristic equation is

I[d-kq=o (B27)

where I is the identity matrix.
Bending,-The deflection at the station i due to the con-

tinuous loading g~(z) on the beam will be given by

Y’=N1’’’(Z)((Z$Z)
‘Jn’’(z)J’(2-zY-‘Bn)
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If B is assumed to ha-re a constant -due for each interred,
these integrals may be -written as the sum of rntegraIs over
each interval. Equation @28) then becomes

By substituting the relation

gh(zj=m’m ~gj(z)v, (B30)

and by assuming a constant average due for m in each in-
terval and changing the summation order,

(B31)

where

13ij=&~{?nk(iP’,k—Q’,J +
,Slmr[(”i -

–k+;) L\-’fr+

J k-L

For a uniform beam,
comes

mk=l?k= 1 and equation m32) be-

p_(~- 1)3 (2k–1) ~ J~,

[ 3 2 1 D
3r (B32a)

Let
B.

h=—
&#mO (B34)

then the characteristic equation becomes

where 1 is the identity matrix and Bfj is the dynamicsd ma-
trix. In expanded form, equation (B35) becomes

Pl,–x 6,2 . . . /9!.

621 p2’-h . . . ph

. . . . . . . . . . . . . . . .

P. I B*9 .-. B..–h’

=0 (B35a)

where A is a latent root of the matrix ~J.

Coupled bending-torsion vibrations .-’l?he deflections at
station i are given as before by equations (B19) and @28).
The loading functions q, and q~ are changed as foIIovrs:

(B36)

If these two equations we substituted into equations (B19)
and @28) and the integrations are performed-as previously;
the foIlowing reIation is obtained:

where a~, and p ~jare given in equations (B24) and (1332) and

.,
where

k
P*=

H 1
;–(k–l)z+; (k–l)’ J(z)d:

k-1

the determinanttd equation therefore is

where [~fj] is the dynamical matrix, the elements of which
are as indicated in equation (B37). The matrix [qij] is seen to
be a 2nX2n matrix.



APPENDIX C

QUADRATIC FORMULA FOR FIRST COUPLED MODE

If only the first vibrational mode is desired, it is possible 1 mass moment of inertia about elastic axis, function of z
ta obtain this mode approximately by coupling togdher the ab frequency of uncoupled fundamental bending mod”c
fundamental uncoupled bending mode with the fundamental &l frequency of uncoupled fundamental torsional mode
uncoupled torsional mode to obtain a simple quadratic . . denotes differentiation twice with respect to time
equation for the fhst coupled frequency. This equation is
valid when the coupling coefficient c iE constant along the
beam. The dtierential equations obtained by coupling the
fundamental uncoupled torsional mode with the funda-

These equations lead to a quadratic cquaticm in tlm fre-
quency ratio Q, whose solution for the lowest frequency,
provided e is constant along the beam, is

mental uncoupled bending mode are: ~2

*[’-FT2I”%5-2(1-6)

where
(cl)

Q frequency ratio, (W/W*)2
-y uncoupled frequency ratio, (wJwJ
c coupling coefficient, (r/r~)2

(C2)

m mass per unit length of beam, function of z This quadratic has been plotted in figure 4 for values of c
S static mass unbalance, function of z ranging from O to 1 and values of 7 = (wJwJ2 from 1 to 100.

APPENDIX D
EXACT SOLUTION FOR COUPLED llENDING-TOIWION VIBRATIONS OF UNIFORM CANTILEVER BEAM

The differential equations for the equilibrium of an ele-
ment of a beam vibrating in coupled bending-torsion vibra-
tions can be put in the following dimensionless form:

where

distance from root
‘=~”

Now

E=(r/T’)’

where
c4=12.36

ch=2.467

Equations (DI) become

d4Y,
~=c4fKY1+ Y2)

d’YS C$l CJ2
—=—.s ~ Y1—7 Y~
dx’ 1

(Ill)

(D2)

where
Q= (@/wJ2

y= ((JJWJZ

Let

dyl- y,
dx

w-y,
dx

dY,_Y
dx ‘

dya—yo
dx

Then
dY,
~=c4fl(Y1+ Y’)

(D3)

Equation (D3) can be written as the single matrk equation

.

“o 0 1ooo-

0 0 0001

0 0 0100

0 0 0010

c4fl c4fl 0000

— EcJl
=0000

,7 Y .

(IM)

90
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(D4a)

where 1“ and.4 are the matrices indicated.
The solution to the matrix equation (D4) is given by

Y=& I’, (D5)

where 1-0 is a cohmm of arbitrq constamts.
From the boundary conditions

at Z=o r,= r,= I-,=o

X=l 1“,= r,= T@=o

[1
o
0

I-o=1-(0) = Y$JO)
r,(o)
Y,(o)

lf then Qij is an element of the matrizant
conditions give

=0

d, the boundary
.

@6)

It has aninfi.niteEquation (D6) is the frequency equation.
number of roots for w.

In order to determine the elements fl,j, e4 must be emlu-
ated. Use will be made of Sylveste~s theorem (refer-
ence. 13).

The A matrix of ~

–h o

0 –h

o 0

0 0

CJ2 C4Q

C5Q c&f2
E————

-J’ ‘r

CAKTILIKER BEAMS

is

1 0 0

0 0 0

–h 1 0

0 –k 1

0 0 –k

o 0 0

o’

1

0

0

0

–k

91

.

The characteristic equation A(X) = O is

X6+: x~—c4Qx*—(1—E)c& ;2=0 037)

Equation (D7) is a cubic equation in Xz. Let the roots be

All—xl, Al,—Xz, h~,—k~

Then by the confluent form of Syl-rester’s theorem,

where J’(A) is the adjoint matrix, r is the number of distinct
roots, and at is the muIt.iplicity of the ilh root.

If the roots are all distinct, this rdation becomes

s e+l’(jq —t?-+F(—hJ

‘=E 2x*j9rx,)(Ai+h,)

where the adioint matrix ~(k) is gi~en by

(D9)

(DIo)
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From equations (D9) and @10), the elements fl~j are seen
to be given by

(DII)

.

The value of the deterfiant in equation 03) must be plot-
ted against the frequency; tie value of the frequency for
which this determinant becom~ zero is thereby obtained.
This procedure involves fist SOIV@ the cubic equation (D7)

TABLE I—STATION NUMBERS

M

N

P

Q

M’

N’

P’

Q’

.,.

. . —.

for each assumed value of frequency parameter and then
calculating the elements of the determinant from equations
(Dll). The process is evidently long and laborious.
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T.413LE II—STATION NUMBERS

n=z

1
g
y

o.ua3a3
. om32
. 63m4
.8S71W
. lnm
.036M6

6
Ii
~

0,0%
.02B206
.&z?%3
.S61Q4S
.0670s6
.mm
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TABLE 111-STATIOX XUMBERS TABLE IV-STATION NEMBERS

n= 3 n=4

I
1 2 s 4I 2 8

L0Z222
.676466
. lwa
.W240
.aSlm
.413i38
.162266
.mml.a

0.4!XW3
.m
.02wa7
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.0WO16
.047267

-ysls&+

–. mmsl
: ~;

–. XGi19
–. olm51
-. mm
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–.03740L
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L-
. 14W2
.91sio7

IL522222
Li2E365
.03i2n2
. Iw

i%%!
.0m554
.194016

—

4 -0. 221iol
–. omW
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TABLE VI-STATIOX NUMBERS

n=6
.-

—

Ixl’1’l’l’l’l’
1 L KXti3

:=
. IM1561
X&&

. MMO

. W1616

0.391101
. 601s56
.024m5
.029221
. 4i417i
.62106i
.024473
.041021

-o. mo149
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-. 0oM9s
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–. olsm5
–. 033901
-. 002ml
–. Ollmo
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.005m9
.o16W9
.W902
.IM22a
.olM94

TABLE V+3TATIOX NU31BERS

%=5

I 4I \
k

j
582

1 L lWiWl
.W2z2
aM&

.Ewm2

.43i616

.mm

.Wo729

O:m-ig
.0m9m
. IMI91O
.4a2141
. 64iE30
.m6m8
.042m

0.7s$339
L%2344
.169599
.212iQ2
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TABLE VII—STATION NUMBERS
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TABLE VIH4TATION NUMBERS
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TABLE IX—COMPARISON OF RESULTS
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TABLE X—STATIONS REQUIRED FOR SATISFACTORY ACCURACY
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